

AI-POWERED INDUSTRIAL ROBOTIC WORKFORCE

Jim Keravala

CEO

OffWorld

jim.keravala@offworld.ai

TOUGH JOBS ARE MADE FOR ROBOTS

We are developing a robotic workforce for heavy industrial jobs on Earth, Moon, asteroids & Mars.

MILLIONS OF SMART ROBOTS

working under human supervision on- and offworld, turning the inner solar system into a better, gentler, greener place for life and civilization.

AD ASTRA PER TERRAM ENABLING HUMAN EXPANSION OFF OUR HOME PLANET

- 1. Life insurance policy
- 2. Sustainable development on Earth
- 3. The new frontier

SETTLEMENT HAS ALWAYS BEEN DIFFICULT

- Limited supply chain
- Harsh environment
- Forced labor

SPACE SETTLEMENT IS EVEN HARDER

- L. No usable atmosphere
- 2. Radiation environment
- 3. No supply chain
- 4. Variable gravities
- 5. Biological challenges
- 6. No indigenous foods
- 7. The most expensive labor

SPACE NEEDS TAKERS FOR TOUGH JOBS

- build landing pads
- excavate underground habitats extract water ice and materials
- make drinkable water, breathable air and rocket propellant
- manufacture basic structures and solar cells
- produce electricity
- ...and eventually replicate themselves

BUILDING ON LESSONS FROM DECADES OF REMOTE AUTOMATION

- 1. Expensive
- 2. One-offs
- 3. Long build times

INTRODUCING A NEW GENERATION OF INDUSTRIAL ROBOTIC WORKFORCE

- 1. Ultra low cost
- 2. Thousands of robots
- 3. Solar system standard
- 4. Autonomous ops
- 5. Modular configuration
- 6. Humans remain safe

EXPANDING TO SPACE DEPLOYMENTS OF INDUSTRIAL ROBOTIC SPACEFORCE

THREE AMBITIOUS GOALS

#1:

Reduce total cost of operations 10X

We are looking for at least an order of magnitude reduction in the total cost of operations within any industrial sector. #2:

Create fully scalable solutions

We are after a solution where everything becomes an operational cost with no/little CAPEX. Our costs will be able to scale up and down in line with size of industrial operations.

#3:

Accelerate growth of industrial productivity

We aim to create a solution that does not just establish a new static level for industrial productivity. We aim to create a solution that has inbuilt levers for continued gains in productivity for decades to come.

FOUR DESIGN CONSTRAINTS

#1

No infrastructure

Assume we cannot build new facilities and other infrastructure, cannot access external power sources, etc.

IDEAL SOLUTION SPACE

#4

No consumables

Assume we cannot bring any consumables to the operations site or use locally sourced water in the process.

#2

No humans

Assume humans cannot be used to perform any of the industrial functions directly, only to oversee and enable the performance of robotic workforce.

#3

No footprint

Assume we cannot use fossil fuels to power robotic operations. Assume footprint at the site of operations must return to pre-existing format

AMBITIOUS INTEGRATION REQUIREMENTS

A.I.	&	Co	m	pι	ıte	r
Scio	en	ce				

Machine learning
Virtual Assistants

Structured analysis

Knowledge representation

Workflow automation

Activity recognition

Cyber & security

Trusted systems

Data analytics

Automated reasoning

Cyber-physical systems

Space and Planetary Surfaces

Spacecraft propulsion

Modular architectures

In-space assembly

Extraterrestrial mining

In situ processing

Volatile extraction

Surface construction

Remote operations

Environmental systems

Propellant transfer

Radiation tolerant systems

Robotics & Automation

Modular systems

Manipulation

Mobility

Actuators

Automation systems

Machine learning

Perception

SLAM

Electro-active materials

Space operations

Extreme environment

robotics

Teleoperations

Sensing & Interaction Devices

Multi-spectral imagers

Communication systems

Radars

Lasers RF

Position

Tactile & Force

Physiological monitoring

Speech recognition

Perception

Visual search

Augmented reality

Object recognition

Energy & Materials

Custom polymers

Solar power

Gas separations

Efficient energy transfer

Sustainable materials

Extreme deployment

solar

Resilient storage

Supercapacitors

NEW ROBOTIC GENERATION CHARACTERISTICS

1. SMALL AND ROBUST

To neatly pack into and survive launches on rockets

2. EXTREMELY ADAPTABLE

To function across a wide range of environments on Earth, Moon, asteroids and Mars without major redesign

3. SOLAR ELECTRIC POWER

To use the one sustainable power source we can count on in the inner solar system

4. AUTONOMOUS AND FAST LEARNING

To get by with machine intelligence without onsite humans to bail them out

5. MODULAR AND RECONFIGURABLE

To maximize the re-use of launched hardware as there will be no local hardware shops or Amazon deliveries (for a while)

FIRST MARKET OPPORTUNITY: \$100B+ MINING EQUIPMENT INDUSTRY

 Mining equipment manufacturing today is a ~\$90 billion market

demand forecast to grow at 7% per

Source: Freedonia Group; team research.

MINING IS AT THE END OF CURRENT INNOVATION PARADIGM...

BIG IDEA: REPLACE CONVENTIONAL BULK MINING WITH PRECISION SWARM ROBOTIC MINING (SRM)

	CONVENTIONAL MINING	SWARM ROBOTIC MINING		
ORE BODY	Bulk mining	Precision mining		
EQUIPMENT	Big & dumb	Small & autonomous		
HUMANS	Miners at the rock face	Supervisors in C&C centers		
DATA	Data is king in exploration	Data=productivity		
ENVIRONMENT	Do what's required	Leave no trace		

THE COST ADVANTAGE OF SRM

DIGGER BOT IN THE FIELD

OffWorld, Inc. Confidential and Proprietary Information, subject to NDA

TECHNOLOGY DEVELOPMENT

MICROWAVE

PLASMA

DRY ELECTROPULSE

OPERATION CONTROL SYSTEM

REAL

Technology: Sensored Robotic platform

Mine environment

SLAM Packages

Rviz visualization

SIM

Technology:

Robotic platform URDF

GAZEBO Mine environment

SLAM Packages

Rviz visualization

DEEP REINFORCEMENT MACHINE LEARNING

TARGETER NEURAL NETWORK

Goal: Excavate rock

Setup: Robotic chisel with RGBD camera

excavating rock that falls and is weighed

with USB scales

Reward: Mass of excavated rock

Method: Deep reinforcement learning agent

developed and trained through IL followed

by DRL on real world rock

Agent: DQN with a CNN as q-value approximator in

Python using Keras library with TensorFlow

backend

Input: Depth Image

Output: Heat map of possible excavation target

locations

DATA CAPTURE

Seamless, continuous data gathering from millions of robots:

- High intrinsic asset value
- Soil & ore body chemistries
- mine air quality
- hardware vibration loading
- alloy corrosiveness levels
- etc...

2020 SYSTEM: TWO BOT SYSTEM

FULL DEPLOYMENT: EMPOWERING HUMANS TO BACK OUT OF THE UNDERGROUND OPERATIONS

A NEW TYPE OF WORKFORCE

DEVELOPING ROBOTIC CONSTRUCTION SWARMS, STEP BY STEP

Single task robots for repetitive tasks, e.g., geotech tests Robotic squads for end-to-end work flows, e.g., tunneling Robotic swarms for end-to-end projects, e.g., design/build of major utilities & horizontal infrastructure SCALING OPPORTUNITIES

REPURPOSING ROBOTS TO ADDITIONAL INDUSTRIES

Smart cities

Inspect, maintain and repair municipal infrastructure

Underground tunnels

Break blockages in water and sewage tunnels

Urban defense

Support and protect troops in logistics

Space

Surface resource exploration and construction

OFFWORLD SPACE MINING

